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MHD Equilibrium Equation with Azimuthal
Rotation in a Curvilinear Coordinate System

Ricardo L. Viana1,2

Received November 3, 1997

We derive, according to a procedure introduced by Maschke and Perrin, an
equation for MHD stationary equilibrium with azimuthal rotation in an orthogonal
curvilinear coordinate system. We assume that there is an ignorable coordinate
so that surface quantities like the magnetic flux and the rotation frequency do
not depend on it. The temperature is also considered a surface quantity. As an
application of the formalism, we consider prolate spheroidal coordinates, which
are convenient for studying plasma rotation in compact tori configurations like
Spheromaks.

1. INTRODUCTION

Experimental results indicate the existence of azimuthal (toroidal)

plasma rotation in Tokamaks subjected to neutral beam heating (Bell, 1979;

Suckewer et al., 1979). In field-reversed configurations (FRC), azimuthal

rotation is responsible for a type of instability that may destroy plasma
confinement (Linford et al., 1979). Stellar plasmas are also systems in which

azimuthal rotation plays a major role (Plumpton and Ferraro, 1955). One

possible approach to investigate the effects of rotation on MHD equilibrium

and stability properties would be to obtain numerical solutions of the 3-

dimensional ideal MHD equations, but even so we would like to have some

analytical solutions in order to benchmark the computer results.
Theoretical investigations of such stationary MHD equilibria (in which

all time derivatives vanish, but with a constant angular velocity) are possible

since the introduction of a pressure equilibrium equation by Maschke and
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Perrin (1980). Magnetic flux surfaces rotate rigidly with the plasma, according

to AlfveÂn’ s theorem (AlfveÂn, 1953), and are characterized by poloidal flux

and current functions that satisfy an elliptic partial differential equation which,

in the limit of vanishing rotation, is reduced to the Grad±Shafranov equation

(Stacey, 1981)

In addition to the ideal MHD equations, Maschke and Perrin have made

some thermodynamic assumptions: the plasma is taken to be an ideal gas

and its internal energy is proportional to the temperature. Furthermore , they

assume that the plasma thermal conductivity is larger along the magnetic

field lines than across them, so it would be possible to consider the plasma

temperature as a surface quantity. A similar equation has also been derived

by considering the entropy as a surface quantity.

However, the equation originally derived by Maschke and Perrin

holds only for cylindrical coordinates, and very few analytical and numeri-

cal solutions of it are known. Recently Viana et al. (1997) derived and

analytically solved a form of Maschke±Perrin equation in spherical coor-

dinates, which is a simple model to study FRCs and Spheromak-like

conf igurations.

In this work we derive a version of Maschke±Perrin equation that holds

for any orthogonal curvilinear coordinate system in which there is an ignorable

coordinate, so that the magnetic flux surfaces are axisymmetric. We have

made essentially the same assumptions as Maschke and Perrin, particularly

with respect to the role of the temperature. As an example, we consider

prolate spheroidal coordinates, which is a convenient coordinate system for

some Spheromak models. The corresponding static equation has been analyti-

cally solved by Kaneko and Takimoto (1982).

This paper is organized as follows: in Section 2 we outline the basic

equations to be used, both magnetohydrodynamic and thermodynamic, and

the magnetic field representation. In Section 3, we exploit AmpeÂre’ s law to

introduce the generalized Shafranov operator into the pressure equilibrium

equation and obtain the general Maschke±Perrin equation. Section 4 presents

an application to prolate spheroidal coordinates. Our conclusions are followed

by an Appendix, where we outline some useful formulas involving curvilin-

ear coordinates.

2. BASIC EQUATIONS

Let us consider an ideal plasma of electrons and singly charged ions in

stationary equilibrium, where all partial time derivatives vanish, but allowing
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a constant nonzero velocity. The corresponding MHD equations are (Sta-

cey, 1981)

= ? ( r v) 5 0 (1)

r (v ? = )v 5 2 = p 1 j 3 B (2)

= ? B 5 0 (3)

= 3 B 5 m 0 j (4)

= 3 E 5 0 (5)

E 1 v 3 B 5 0 (6)

where

r 5 n (me 1 mi) (7)

is the mass density, n is the particle number density, and me , mi are the

electronic and ionic masses, respectively. v, p, E, B, and j are the velocity,
pressure, electric field, magnetic field, and plasma current density,

respectively.

In order to get a closed system of field equations we must introduce some

constitutive thermodynamic assumptions, as well as a working hypothesis on

the plasma temperature. We suppose the plasma is an ideal gas, obeying

the equation

p 5 r RT 5 nkT (8)

where T is the plasma temperature (sum of electronic and ionic temperatures),

R and k being the gas constant and Boltzmann constant, respectively. We

assume that the internal energy is simply proportional to the temperature.

Finally, we may suppose that the plasma electric conductivity is larger

along the magnetic field lines than across them, in such a way that the plasma

temperature turns out to be a surface quantity (Maschke and Perrin, 1980)

B ? = T 5 0 (9)

Let (x 1, x 2, x 3) denote the contravariant coordinates in a curvilinear

coordinate system. In what follows, we will assume that 0 # x 3 # L is an

ignorable coordinate with period L, i.e., surface quantities do not depend on

x 3. Here eÃi (i 5 1, 2, 3) are the covariant basis vectors for this system, such

that gij 5 eÃi ? eÃj are the covariant components of the metric tensor (see Appen-

dix). We will consider only orthogonal coordinate systems, for which this
tensor is diagonal, i.e., gij 5 0 for i Þ j.

A magnetic field representation satisfying equation (3) can be written

in terms of two scalar surface functions C and I (transversal flux and current

functions, respectively)
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B(x 1, x 2) 5
eÃ3

g33

3 ¹ C (x 1, x 2) 2 m 0I (x 1, x 2)
eÃ3

g33

(10)

We assume that the plasma is rotating with a constant angular rotation

frequency V along the eÃ3 direction and around the symmetry axis,

v(x 1, x 2) 5 V (x 1, x 2)eÃ3 (11)

in such a way that mass conservation, equation (1), is identically satisfied.
An important consequence of the above formula appears when one

combines the generalized Ohm’ s law, equation (6), with Faraday’ s law, equa-

tion (5). Using the representations for magnetic field and velocity given by

(10) and (11), it follows that

¹ V 3 ¹ C 5 0 (12)

which is known as Ferraro’ s isorotation law. It implies that V 5 V ( C ), i.e.,

the angular frequency is a surface quantity in the sense that each flux surface

rotates rigidly with a different frequency.

3. MASCHKE ± PERRIN EQUATION IN CURVILINEAR
COORDINATES

Substituting the magnetic field representation (10) in AmpeÂre’ s law,

equation (4), we have

j 5
1

m 0 F ( ¹ C ? ¹ ) 1 eÃ3

g33 2 1 ¹ 2 C 1 eÃ3

g33 2 1 m 0 1 eÃ3

g33 2 3 ¹ I G (13)

where we have used the fact that C , I, and the metric tensor components do

not depend on the ignorable coordinate x 3.

Let us introduce the so-called generalized Shafranov operator, defined
for orthogonal coordinate systems as

D * C 5 g33 ¹ ? 1 ¹ C
g33 2 (14)

and substitute it into (13) to obtain

j 5
1

m 0 F D * C 1 eÃ3

g33 2 1 m 0 1 eÃ3

g33 2 3 ¹ I G (15)
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The Lorentz force term in the pressure equilibrium equation, equation

(2), is obtained by combining (10) with (15), and reads

j 3 B 5
1

g33 1 ¹ I 3 ¹ C 2
1

m 0

D * C ¹ C 2 m 0I ¹ I 2 (16)

whereas the convective part of the velocity time derivative is

r (v ? = )v 5 r V 2 - eÃ3

- x 3 (17)

As - eÃ3/ - x 3 is orthogonal to eÃ3, we can write - eÃ3/ - x 3 as a linear combina-
tion of the contravariant basis vectors eÃ1 and eÃ2. The coefficients of this

linear combination are proportional to derivatives of g33, such that

- eÃ3/ - x 3 5 2 ( ¹ g33)/2.

Substituting (17) and (16) in the pressure equilibrium equation (2) we

observe that ¹ I 3 ¹ C is null, since it would have only the eÃ3 component,

and there is no such component in the other terms of (2). The consequence
is that I 5 I ( C ) is also a surface quantity, as is known in the static equilibrium

case (Stacey, 1981). This implies that (2) is equivalent to the following

equation:

1 D * C 1
m 2

0

2

dI2

d C 2 ¹ C 5 2 m 0g33 1 ¹ p 2
r V 2

2
¹ g33 2 (18)

Taking the gradient of equation (8) and summing and subtracting the

term kT ln( r / r 0), where r 0 is a characteristic value of the plasma density, we

can write the factor in the right-hand side of (18) in the following form:

¹ p 2
r V 2

2
¹ g33 5 n ¹ 1 kT ln

r
r 0 2 1 nk 1 1 2 ln

r
r 0 2 dT

d C
¹ C

2 (me 1 m i)n F ¹ 1 V
2g33

2 2 2 g33 V
d V
d C

¹ C G (19)

where we have used equation (7) and the fact that both T and V are sur-

face quantities.

The pressure equilibrium equation (2) is thus written in the form

H D * C 1
m 2

0

2

dI2

d C
1 m 0g33n F k 1 1 2 ln

r
r 0 2 dT

d C
1 (me 1 m i)g33 V

d V
d C G J ¹ C

5 2 m 0g33n ¹ 1 kT ln
r
r 0

2
(me 1 mi) V 2g33

2 2 (20)
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and taking its vector product with ¹ C , we get to the expression ¹ Q 3 ¹ C
5 0, where we have defined

U [ kT ln
r
r 0

2
(me 1 mi) V 2g33

2
(21)

which turns to be another surface quantity, i.e., Q 5 Q ( C ).

This enables us to define a function

G [
r 0kT

me 1 m i

e Q /kT 5 p exp F 2 (me 1 m i) V 2g33

2kT G (22)

which plays the role of a centrifugally corrected pressure p, since G ® p as

V ® 0. Being also a surface quantity, we may take its derivative with respect

to C and isolate d Q /d C . Substituting the result in (20), we have

H D * C 1
m 2

0

2

dI2

d C
1 m 0g33n F k 1 1 2 ln

r
r 0 2 dT

d C
1 (me 1 m i)g33

3 1 kT
d

d C 1 V 2

2kT 2 1
V 2

2T

dT

d C 2 G J ¹ C

5 2 m 0g33nk F T

G

dG

d C
2 1 1 2

Q
kT 2 dT

d C G ¹ C (23)

For an arbitrary nonvanishing ¹ C we obtain the form of Maschke±Perrin

equation

D * C 5 2
m 2

0

2

dI2

d C
2 m 0g33 exp F (me 1 m i) V 2g33

2kT G
3 F dG

d C
1 Gg33(me 1 m i)

d

d C 1 V 2

2kT 2 G (24)

and in the limit of vanishing rotation we recover the Grad±Shafranov equation

for static equilibria in a curvilinear coordinate system,

D * C 5 2
m 2

0

2

dI2

d C
2 m 0g33

dp

d C
(25)

Solving the rotating plasma equation, as in the static case, requires prior

knowledge of the C dependence of G and I 2, which must be given as profiles.



MHD Equilibrium with Rotation 2663

Let us close this section by introducing the Mach number for the

plasma rotation

} 5
| v ^ 3 & |

cs

5
! g33 V

! g RT
(26)

where v ^ 3 & is the ª physicalº component of the velocity in the azimuthal

direction (see Appendix), and cs is the adiabatic sound velocity.

4. APPLICATION

In cylindrical coordinates (x 1, x 2, x 3) 5 (R, Z, w ), equation (24) is

essentially the same as that derived originally by Maschke and Perrin (1980).
They also obtained a closed analytical solution for it by assuming that G and

I 2 were linear functions of C , and d ( V 2/2kT )/d C 5 0. Missiato and Sudano

(1982) obtained an analytical solution in the form of an infinite series by

assuming the same hypothesis for V 2/2kT and G, and considering I 2 quadratic

in C . Clemente and Farengo (1984) supposed that both I 2 and G were

quadratic in C , obtaining analytical and seminumerical (the angular part is
factorized) solutions.

The corresponding equation in spherical coordinates (x 1, x 2, x 3) 5
(r, u , w ) was derived by Viana et al. (1997), who also presented an analytical

solution for it, assuming that G and I 2 are linear and quadratic in C , respec-

tively, as well as the same hypothesis for V 2/2kT. The most important observed

effect was the outward shift of the magnetic axis radial position with toroidal
(azimuthal) plasma rotation.

One of the more convenient coordinate systems to study MHD equilibria

in Spheromak-type and compact tori configurations is the prolate spheroidal

system (Morse and Feshbach, 1953). In this case, we take the z axis as

the symmetry axis of the plasma and use the contravariant coordinates
(x 1, x 2, x 3) 5 ( j , h , w ), with

x 5 r cos w , y 5 r sin w , z 5 c cosh j cos h (27)

where 0 # j , ` , 0 # h # p , 0 # w , L 5 2 p , and r 5 c sinh j sin h ,

with 2c . 0 being the distance between the two foci. The plasma surface is

a coordinate surface j 5 j 0, which is a prolate spheroid of semimajor axis

c cosh j 0 and semiminor axis c sinh j 0. The metric tensor components and

related information are listed in the Appendix.

The magnetic field representation in such a case is [cf. equation (10)]

B( j , h ) 5
w Ã3 ¹ C ( j , h ) 2 m 0I ( j , h ) w Ã

r ( j , h )
(28)
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where w Ã[ eÃ̂3 & is the orthonormal basis vector in the azimuthal direction.

The plasma rotation is described by the velocity profile v( j , h ) 5 r ( j , h ) V ( j ,

h ) w Ã, which satisfies Ferraro’ s isorotation law.
The generalized Shafranov operator in this coordinate system is

D * C 5
1

c 2(cosh2 j 2 cos2 h ) F - 2 C
- j 2 1

- 2 C
- h 2 2 coth j

- C
- j

2 cot h
- C
- h G (29)

entering the Maschke±Perrin equation, which reads

D * C 5 2
m 2

0

2

dI 2

d C
2 m 0c

2 sinh2 j sin2 h exp F (me 1 mi) V 2c 2 sinh2 j sin2 h
2kT G

3 F dG

d C
1 Gc2 sinh2 j sin2 h (me 1 mi)

d

d C 1 V 2

2kT 2 G (30)

where the modified pressure function is given by

G 5 p exp F 2 (me 1 mi) V 2c 2 sinh2 j sin2 h
2kT G (31)

The static case of this equation was studied by Kaneko and Takimoto

(1982), who used profiles for p and I 2 linear and quadratic in C , respectively.

In our language and notation, they would correspond to the following profiles

(a and h being positive constants):

G ( C ) 5
a

m 0

C (32)

dI2( C )

d C
5

2h 2

m 2
0c

2 C (33)

V 2

kT
5 const (34)

which reduces the Maschke±Perrin equation to the particular form

- 2 C
- j 2 1

- 2 C
- h 2 2 coth j

- C
- j

2 cot h
- C
- h

1 h 2 (cosh2 j 2 cos2 h ) C

5 2 ac4 sinh2 j sin2 h (cosh2 j 2 cos2 h ) exp 1 32 e sinh2 j sin2 h 2 (35)
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where

e [
(me 1 mi) V 2c 2

3kT
5

c 2

g33

g
3

}2 (36)

is a measure of the rotational kinetic energy with respect to plasma thermal

energy, and it is proportional to the square of Mach number (26).
An analytical solution to the static case ( V 5 e 5 0) was obtained by

Kaneko and Takimoto (1982) as a combination of angular and radial spheroi-

dal wave functions. The vacuum case of the static equation (a 5 h 5 0) has

a similar solution, written as a combination of Legendre and radial spheroidal

wave functions.

5. CONCLUSIONS

In this paper we have derived an equation for MHD stationary equilib-
rium with azimuthal rotation in a curvilinear orthogonal coordinate system,

according to a procedure introduced by Maschke and Perrin. The plasma

configuration must have one ignorable coordinate, such that no surface quanti-

ties or metric coefficients may depend on it. The magnetic field is written

in terms of two surface quantities that obey an elliptic partial differential
equation, which in the limit of vanishing plasma rotation reduces to the

Grad±Shafranov equation of static MHD equilibria. We have considered the

plasma temperature as a surface quantity. The azimuthal rotation is such that

every magnetic flux surfaces gyrates with a different angular frequency.

The equation so obtained generalizes previously known cases in cylindri-

cal and spherical geometries. An application is given for prolate spheroidal
coordinates, which is a system suitable for studies of compact tori configura-

tions like the Spheromak. Solving this partial differential equation requires

prior knowledge of two profiles: one for the current function and another for

the centrifugally corrected pressure.

For cylindrical and spherical cases there are few analytical solutions

available in the literature. For the proposed case of prolate spheroidal coordi-
nates there is an analytical solution only for the static case. The rotating case

turns out to be extremely difficult to handle analytically even by expanding

the exponential term in powers of the dimensionless rotation parameter e .

This case would require the use of standard numerical methods similar to

those used for solving the static Grad±Shafranov equation.

APPENDIX

In this appendix we will review some useful relations involving curvilin-

ear and spheroidal coordinates. A more comprehensive treatment is found,
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for example, in D’ haeseleer et al. (1991). Consider a system of contravariant

coordinates (x 1, x 2, x 3). A coordinate surface is characterized by x i 5 const,
and a contravariant basis vector eÃi 5 ¹ x i is orthogonal to that surface.

A covariant basis vector is defined by eÃi 5 - r/ - x i, where r 5 xõ Ã1 yjÃ

1 zkÃ( õ Ã, jÃ, and kÃare Cartesian basis vectors). The covariant and contravariant

basis vectors are orthogonal in the sense that eÃi ? eÃj 5 d j
i, where d j

i is the

Kronecker delta.

The covariant metric tensor has components defined by gij 5 eÃi ? eÃj. An

orthogonal coordinate system has a diagonal metric tensor, which means that

g 5 det gij 5 g11g22g33

The contravariant metric tensor also has only diagonal components for orthog-
onal systems, gii 5 1/gii, such that det gij 5 1/g.

The relationship between covariant and contravariant basis vectors is

also apparent in the following vector products (i, j, and k are in cyclic

permutation of the indexes 1, 2, 3)

eÃi 3 eÃj 5
1

! g
eÃk eÃi 3 eÃj 5 ! geÃk

The covariant and contravariant components of an arbitrary vector A,

given by Ai 5 gijA
j and A i 5 gijAj , respectively (the summation convention

is used), may or may not have the same physical dimensions of A itself, so
it is convenient to define ª physicalº components of A and the corresponding

orthonormal basis vectors as A 5 A ^ i & eÃ̂i & , where (no sum in õ Å)

A ^ i & 5
1

! g ii
Ai 5 ! giiA

i, eÃ̂i & 5
1

! gii

eÃi 5 ! g iieÃi

Let f and A denote arbitrary smooth scalar and vector functions of x i,

respectively. Their gradient and divergence are defined as

¹ f 5
- f
- x i eÃi, = ? A 5

1

! g

-
- x i ( ! gA i )

respectively; and the rotational is particularly simple if we require that x 3 is

an ignorable coordinate, and reads

= 3 A 5
1

! g F - A3

- x 2 eÃ1 2
- A3

- x 1 eÃ2 1 1 - A2

- x 1 2
- A1

- x 2 2 eÃ3 G
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The covariant basis vectors of the prolate spheroidal coordinate system

are given by

eÃj 5 c sin h cosh j (cos w õ Ã1 sin w jÃ) 1 c cos h sinh j kÃ

eÃh 5 c cos h sinh j (cos w õ Ã1 sin w jÃ) 2 c sin h cosh j kÃ

eÃw 5 2 c sin h sinh j (sin w õ Ã2 cos w jÃ)

in such a way that the nonzero covariant metric tensor components are

g11 5 g22 5 c 2 (cosh2 j 2 cos2 h ), g33 5 r 2 5 c 2 sinh2 j sin2 h
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